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Assuming a random-matrix model for the system-bath interaction and using a 
series expansion for the evolution operator, we studied the relaxation of a non- 
degenerate two-level system. For times larger than the duration of a collision 
and smaller than the Poincar6 recurrence time, we calculate the survival 
probability of still finding the system, at time t, in the same state in which it was 
prepared at t = 0. For a fixed initial state of the bath, we obtain an exponential 
transition rate, but when we average over initial states we may get a mixture of 
decay constants that could distroy the exponential behavior of the transition 
rate. 
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1. I N T R O D U C T I O N  

One can easily find m a n y  physical  and  chemical  systems whose dynamics  
can be s tudied by means  of two-s ta te  models  (1 7~ where, for a realist ic 
descr ipt ion,  an in te rac t ion  with the env i ronment  (heat  bath ,  r ad ia t ion  field, 
etc.) should  be considered.  I t  turns  out  tha t  the t ime evolu t ion  of two-level  
systems is subs tan t ia l ly  modif ied  by such an interact ion.  Some real systems 
are in t r ins ical ly  two-s ta te  systems, i.e., they possess a discrete degree of 
f reedom that  can take  only  two values ( sp in - i /2  part icles,  p h o t o n  polar iza-  
tion, etc.). O the r  systems possess a con t inuous  degree of f reedom q, whose 
dynamics  can be descr ibed  by using a po ten t ia l  energy funct ion V(q)  with 
two separa te  min ima  (paraelec t r ic  resonance  re laxat ion,  s tab i l iza t ion  of 
h a n d e d  molecules,  molecu la r  po la rons ,  tunneling,  etc.). A l though  a 
comple te  so lu t ion  for the diss ipat ive  two-level  systems seems ra ther  
difficult, there  is an increas ing interest  in these p rob lems  and  significant 
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progress has been achieved. It is usual to consider Hamiltonians with the 
structure 

H = H s +  HE+ H I (1) 

where H s describes the isolated two-state system, HE describes the environ- 
ment, and H~ the system-environment interaction. One of the well-known 
Hamiltonians of this kind that has been extensively studied in the literature 
is the "spin-boson" Hamiltonian (4~ 

H = _ ~ h A o ~ r x + ~ a z +  y, " 1 2 2 

1 
+ ~ q o a z 2  C~x~ (2) 

Here the isolated two-state system is completely described by the first two 
terms. The set of harmonic oscillators in the third term represents the bath 
and the last term represents the system-bath interaction. The physical 
meaning of the first two terms can be found with the help of a potential 
energy function V(q) with two separate minima. Legget et al. discuss this 
case and show that the double-well system is effectively described by the 
Hamiltonian in Eq. (2) if the barrier height Vo is large compared to hcoR 
and hco L (where coR and COL are the classical small-oscillation frequencies in 
the right and left well, respectively) and the bias ("detuning") e between the 
ground states is small compared to coR and COL. When the basis is chosen 
so that the eigenstate 10R) (IOL)) of O'z with eigenvalue +1 ( - 1 )  
corresponds to the system localized in the right (left) well, the term 
(1/2) eax represents the difference in the ground-state energies, while the 
term (1/2) hAoax describes the tunneling between the wells. For many cases 
of practical interest, one can just consider that ~ = 0. An alternative inter- 
pretation for the first two terms in Eq. (2) is that they represent a particle 
of spin 1/2 in the magnetic field H = - e~  + hAot. One of the quantities that 
has been calculated by Legget et al. is the expectation value of a~ as a 
function of t. 

Another well-known Hamiltonian is the "rotating-wave" Hamiltonian 
used in quantum optics to describe the rate process of a two-state atom 
interacting with a radiation field. In a fictitious spin-l/2 representation, the 
rotating-wave Hamiltonian is obtained as an approximation of the 
so-called "dressed-atom" Hamiltonian of the form (6) 

1 2 H=~oJoaz+OJc E a+ a~+~axE (a~+a+~ (3) 
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There is no difference at all between (2), with e=0 ,  and (3) if in the 
last case the basis is chosen so that the eigenstates Iq)R) ([(PL)) of ax with 
eigenvalues + 1 ( - 1 )  correspond to the system localized in the right (left) 
well. However, if the basis is chosen so that the eigenstates 11 ) ( I -  1 ))  of 
oz correspond to the system localized in the right (left) well, the quantity 
{a~)r~o calculated with the rotating-wave Hamiltonian does not have the 
same physical meaning as (c~),b calculated using the spin-boson 
Hamiltonian. While (~Tz)sb is associated with the tunneling process, 
(az)r~o is related to the spin-flip process induced by the interaction with 
the bath. 

In the relaxation problems, the process is frequently found to be insen- 
sitive to the details of the interaction, only a few "gross properties" being 
relevant for its description. This feature is not new in many-body problems, 
and has often been explicitly described by constructing a collection or 
ensemble of interactions (y) and calculating an ensemble average of the 
quantity of interest: if that quantity does not vary appreciably across the 
ensemble, it can be reasonably represented by its average; if that were not 
the case, one could certainly calculate the fluctuations of the given quantity 
across the ensemble. This philosophy has been implemented in the study of 
the relaxation of a degenerate two-level system interacting with a bath. (8) 
The purpose of the present paper is to extend the calculations of ref. 8 to 
the case where one also has a Hamiltonian term associated with the 
two-level system. The total Hamiltonian of the problem is given as 

1 H H=~A0az+ B+axV (4) 

The first term describes the dynamics of the isolated two-level system 
and can be interpreted as the energy of a spin-l/2 particle in the magnetic 
field H =  (1/2)A0~. The third term represents the system-bath interaction, 
where V depends only on the bath variables, and He is the bath 
Hamiltonian. 

Suppose that at t < 0 we prepare the system in an eigenstate of a~, say 
I1), while the bath is in thermal equilibrium, and that at t = 0 we switch 
on the interaction. Since axV  induces transitions between the two 
eigenstates of ~z, the system will evolve according to the Hamiltonian in 
Eq. (4); we therefore pose the problem of calculating the probability of still 
finding the system in state 11 ) at time t > 0. We shall be able to show that, 
for flAo~ 1, this problem can be solved, when the time t satisfies the 
inequalities 

/coil ~ t ~ tp (5) 
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tcol! and tp being times on the order of the duration of a collision (to be 
distinguished from the time between collisions!) and of the Poincar6 
recurrence time, respectively. The procedure, inspired by the one followed 
in ref. 9 to describe relaxation phenomena in nuclear physics, essentially 
consists in writing the above-mentioned probability as a series expansion in 
powers of the interaction, averaging term by term and then summing up 
the full series. It turns out that for a fixed initial state of the bath, the sum 
converges into an exponential function. As will be seen later, this exponen- 
tial behavior for the transition rate would be, in general, destroyed when 
we average over the initial states, 

The evolution of quantum systems to statistical equilibrium has also 
been studied from the point of view of the theory of transport equa- 
tions. (1~ A master equation for the probability of finding the system in 
a state or groups of stationary states of the unperturbed part of the 
Hamiltonian was derived by van Hove. (1~) In his approach, the pertur- 
bative part is responsible for the dissipative behavior. Although we are not 
concerned with a perturbative procedure and from our calculation we do 
not obtain a differential equation for the just mentioned probability, we 
should point out that there are some similarities between our procedure 
and the one followed by van Hove. We also work in the interaction 
representation and make use of an expansion for the evolution operator. 
A useful and common assumption is the high density of levels. The 
special properties introduced by van Hove for the matrix elements of the 
perturbative term are, in some sense, equivalent to the statistical properties 
introduced through our random-matrix model. 

Assumptions on a phenomenological, random, time-dependent inter- 
action are sometimes made in relaxations studies. (12 ~6) In the present paper 
such assumptions are not needed, because we work with the full, time- 
independent Hamiltonian, and any time dependence should come out as a 
consequence of the model. We remark, incidentally, that the randomness 
assumed for such a time-dependent interaction has an entirely different 
origin from the one considered in the present article, since in standard 
statistical mechanical problems it is taken for granted that there exists o n e  

total Hamiltonian for the full problem, and not an ensemble of 
Hamiltonians as we consider here. 

The paper is organized as follows. In Section 2 we define with more 
precision the random-matrix model outlined above and we write the 
survival probability as a power series. In order to illustrate the calculation 
procedure, in Section 3 we evaluate in detail some representative terms for 
which we also give a graphical interpretation, which becomes advantageous 
for the evaluation of the most general term. The full series is summed up, 
giving rise to the astonishingly simple final result of Eq. (43) for the 
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survival probability. Some features of our results are discussed in Section 4 
and conclusions are given in Section 5. 

2. THE  S U R V I V A L  P R O B A B I L I T Y  A N D  T H E  
R A N D O M - M A T R I X  M O D E L  

Before we discuss the assumptions on the random interaction, let us 
introduce the notation and write out the physical quantity that we are 
going to calculate. The eigenstate of ~z with eigenvalue c~ is denoted by I~), 
i.e., 

o~ I" )  = "  I~), c~= +1 (6) 

We denote by la)  the eigenstate of the bath Hamiltonian with eigenvalue 
~a, i.e., 

HB la)  =ea Ja) (7) 

The states [ac~) form a complete set of states for the system-bath combina- 
tion, which we assume is governed by the Hamiltonian 

1 H=~ Aoc~+ Hs+~rxV (8) 

Let us consider that at t < 0 the system is held in the state f l ) and the 
bath is in thermal equilibrium, described by the canonical ensemble 

1 pa,=~e-~~ (9) 

where Z is the bath partition function. At t = 0 the system-bath interaction 
is switched on, inducing transitions between the two eigenstates of a~. The 
probability PI ~ l(t) that at a time t > 0 we still find the system in the state 
I1 ), regardless of the state of the bath, is given by (h = 1) 

P i l l ( t )  = ~ Pa~ [ ( la l  e -m '  [la,)(  2 (10) 
g/ i ,  a 

As mentioned before, we are going to simulate the complicated 
system-bath interaction by introducing an ensemble of interactions and 
calculating the ensemble average of our quantity of interest, i.e., the 
ensemble average of Pl~1( t ) .  For  this pourpose we will first write out 
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the survival probability as a series in powers of the interaction H~. In the 
interaction representation we expand the evolution operator as 

fo e i m = e  i.ot ~, ( _ i )~  d t ~ H t ( t . )  
n=O 

xIi < m(,n_,).., f12 d,1 Hi(t1) (11) 

where Ho represents the first two terms of Eq. (4) and 

Hi( t )  = eiH~ H i e -  itio, 

= e*U"Ve-iU't(ax cos A o t -  % sin Aot ) 

= Z Ibj)e%'(byq V l b i + , ) e - i % + l ' ( b / + , l  
bl.bj+l 

x (ax cos A o t -  ay sin Aot) (12) 

Because of ax and a e in (12), only the even-order terms contribute to (11). 
Thus, the survival probability takes the form 

s P l _ . l ( t ) = ~ p ~  2 ( - - )P+q dt2p 
ai p , q = 0  

, '2 dt'l x dt2p-1 " dtl d t2q  "" 

x ~ Va,.bl Vb,~2." Vb>_~a V~e'~_,'" V~ib i Vbi~, 
a, b l , b 2 , . . . , b 2 p  1 

x e x p { i [ ( e ~ -  eel) tl + ...  + (%~p_~- e~) t2p 

+ (% - ebi~_,) t'2q + " + (eb i -- %,) t i ]  } 
! t ! ! x e x p { - i d o [ q - t 2 + t 3  . . . . .  t2p+t2a-t2q l + ' " + t 2 - h ] }  

= ~, P~, E - lP(P'q}( ,,o, a,) (13) 
ai p , q  

which depends on the matrix elements of the system-bath interaction and 
expresses the survival probability as a sum of contributions coming from 
the various initial states ai and the values taken by the variables p and q; 
the (p, q) term is of order 2p + 2q. 

We shall now be more specific about the random-matrix model 
assumed for V. We propose a local GOE (Gaussian orthogonal ensem- 
ble), (s) an extension (used in ref. 9) of the standard GOE. (7) The matrix 
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elements Vab of the operator V, in the basis defined by (7), are assumed to 
form a real symmetric matrix and to be considered as statistically inde- 
pendent Gaussian variables with zero mean and covariance given by 

( Vao Vca) = V2(eab)(~Saubb,. + fia,.C~ba) COAo(e~ -- CO) (14) 

the angular brackets denoting an ensemble average. The only nonzero 
covariance is that of V~b with itself, or with Vb~. This property represents 
here what the special properties for the matrix elements of the perturbative 
term represent in the calculation of van Hove. The quantity eab= (ca + ~b)/2 
is the centroid of the two energies ea and eb. The weight factor ~o~o(ea- eb) 
is assumed to be a Lorentzian function of width A~, thus indicating that the 
interaction V connects eigenstates of He within an energy interval ~A~. 
We can thus visualize the matrix It V J  as having appreciable elements 
inside a band of variable width 2A~ along the diagonal. The quantity 

1 
~oo. ~ j~  (15) 

is a time associated with one application of the interaction, and has been 
interpreted as the duration of a collision. (s'9~ 

In the limit of a large bath with a high density of levels, we shall 
always assume that A~ contains many bath levels, and we shall allow for 
the possibility of a slow dependence of Aa on the bath energy e~. A slow 
dependence on e~ of the strength of the interaction v] and of the density p 
may also occur. 

We shall frequently encounter in what follows the quantity 
(V2~b) P(eb), where p(~) denotes the density of bath states. Using (14) and 
defining the quantity 

F~ = 4=v]p(g~) (16) 

we write (vZb)p(eb)  as 

( V ~ )  p(e~) = .r'a c% (17) 

If as we said before, the dependence on the energy of v 2, p, and A a is 
so slow that the quantities can be taken essentially constant inside the 
interval where cod~ is nonzero; we can then write F a ~ F  b ~ F and Aa~  
A b ~ A. This will be useful later. This assumption of slow dependence on 
the energy leads us to consider the significance of the implicit approxima- 
tion. To first order of the transferred energy we have 

0 In P(eb) 
In p(e~) _~ In P(eb) + (e~-  sb) 
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Considering that, for almost constant total energy, ~ - ~ b  ~- Ao, the 
approximation In p(e,) ~ In P(eb) will hold if flA o ~ 1. 

Once we have defined the random matrix model, the next task is to 
calculate the ensemble average of the survival probability P(t) of Eq. (13), 
which can then be written as a sum over the various ai, p, q contributions 
as 

(Pl~l(t))=2Pal ~ /P(P'q)tt 
ai p,q=O 

- ~ pa,(P7% l ( t ) )  (18) 
ai 

where each contribution satisfies the relation 

( P~PLq~(t, a,) ) = ( P]qL,P~(t, a,) ) * (19) 

In the next section we calculate the ensemble average of the different 
(p, q) terms. For  fixed initial bath state we will be able to sum the whole 
series and so obtain an  astonishingly simple functional form for the 
quantity (P~%l(t)) ,  which is just the survival probability for a given 
initial state. To obtain the final result, we will calculate the average over 
the initial states of the bath. 

3. THE ENSEMBLE AVERAGE OF THE 
SURVIVAL PROBABILITY 

As an illustration, we calculate in detail some representative terms in 
the expansion (18). It will then be easy to infer the general values and 
apply them to the calculation of the survival probability. 

3.1. Some Particular Terms in the Expansion (18) 

1. The term ( p = 0 ,  q = 0 ) .  In this case we just have 

(P~~ = 1 

2. The term ( p =  1, q = 0 ) .  From (13) we have 

( P ~ I ~ ( t ,  ai ) )  = fo dt2 fo2dtl 

• texp[i3o(t 2 t l ) ]  ~ 2 -- (Va,,b~) exp [i(ebl 
t bl 

(20) 

~o)(t~ - t~)] t 
J 

(21) 
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We now concentrate on the calculation of the quantity in wavy 
brackets, which, as we shall see, appears systematically in the more com- 
plicated terms. The sum over b~ van be replaced by an integral if the 
exponential varies only negligibly from one level eb~ to the next; for this to 
happen, one needs times such that 

Dt .~ 1 (22a) 

where D is the mean level spacing. If 1/D is interpreted as the Poincar6 
recurrence time tp, we thus need 

t ~ tp (22b) 

which is certainly satisfied. We shall neglect the fact that for the single term 
a i = b l ,  2 (V~.b~) is twice as big" as for an off-diagonal term [see Eq. (14)]; 
it can be easily checked that the relative error that we make is of the order 
of t/p(ei)~t/tp, which is negligible. We thus use (17) and the comment 
made right after that equation to write ( z -  = t 2 -  tl) 

F, <V ~ a,,bl > expEi(eb, -- ea,)'c] 
bl 

= v~,p(ea,) f o  m~(ea,-- ~bl) expEi(~bl -- ea,)r] &b~ 

= 4---~ ~ | o)~(x) exp(ixT) dx =- -~u ~(~) (23) 

We shall consider initial bath states ai such that the full energy inter- 
val ea,_+ A, to which they are connected by the interaction, is not cut out 
by the lower bound of the spectrum; for a given temperature, we shall 
assume that the relevant G, fulfill this condition; our analysis would thus 
be valid above a certain minimum temperature To (depending on the 
specific structure of the matrix V), in order to avoid any "threshold effect." 
At variance with the degenerate case of ref. 8, we shall see that above To 
the result does depend on A. Under these conditions, eS(r) of Eq. (23) is 
real, symmetric in T, appreciable only inside the interval AT ~ 1/A, and has 
the property 

f ~  eS(T) = rCCO(0) (24) dr 
- - o o  

We recall that (5(z) has to be used inside the time integral of Eq. (21). 
Therefore, for times much larger than 1/A [which was interpreted in 
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Eq. (15) as the duration of a collision], oS(r) behaves like a &function and 
we can write 

A 
e x p ( ~ i A o z ) ~  (V2ai,b~) exp[i(ea -- ea)r] F(ea~) 6(z) (25) 

bl zl + iAo 

To summarize, the times involved in the problem are assumed to fulfill the 
inequalities 

tcoH ~ t ~ tp (26) 

We thus get, for the (1, 0) term of (21), the expression 

F~. tA 
(P]t~{(t,  a i ) )  - (27) 

2 2(zl - iAo) 

the last factor 1/2 arising from the fact that the t~ integration in (21) goes 
only up to t2, thus covering "half of the 6-function." 

In preparation for the analysis of the more complicated terms, we use, 
as in ref. 8, a graphical representation for the term we have just calculated. 
In Fig. 1 and the following ones, we have indicated two time intervals, from 
0 to t, which should contain, respectively, the 2p and 2q ordered time 
variables of Eq. (13). In the present case, Eq. (21) just contains t I and t2, 
which have been indicated in Fig. 1. The line joining them, to be called a 
contraction, indicates the ensemble average of the two corresponding V's 
[remember that in Eq. (11) every t i has an Hi(ti)  associated with it-]. It is 
clear that our result (27) can be written at once from the diagram, by 
following the rules: 

(a) Assign to the contraction a factor Fa,/2. 

(b) Assign to the contraction an extra factor 1/2, whose origin is 
explained right after Eq. (27). 

time t i m !  

tp t 2 

Fig. 1. Graphical representation of the (p = 1, q = 0) = (1, 0) term of Eq. (21). 
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(c) The two times tl and t2 are reduced to a single one [due to the 
h-function (25)], to be integrated from 0 to t; that integration 
gives a factor t A / ( A -  iAo). 

Finally, we see from Eq. (19) that the ( p = 0 ,  q = l )  term gives a 
contribution which is the complex conjugate of (27), so that, to first order, 
we have 

Fa A2t 
o, = + . . .  ( 2 8 )  ( P I ~  1(/)> l 2 zJ 2 --~- z~ 2 

and 

Fai d 2t 
(PTi, ~ ( t ) ) -  2 A2+Ao ~ +  (29) 

Result (29) coincides with that obtained from the "golden rule" of 
quantum mechanics, (171 where a restriction on time similar to (26) also 
appears, the role of A being played by the energy interval over which V 2 aia 
varies appreciably. The structure of the matrix V, which is not required to 
obtain the golden rule, turns out to be very useful in the evaluation of the 
higher-order terms of the series, as we shall see. 

3. The higher-order terms. These terms will be calculated using a 
well-known theorem of statistics(7-9~: in order to calculate the average of a 
product of zero-centered Gaussian variables, one contracts those variables 
in pairs and sums over all possible pair-contraction patterns. 

As an example, the (1, 1) term involves the three diagrams shown in 
Fig. 2. We shall need the relation 

<VabVbc> < = Vab> 6oc ( 3 0 )  

which is a consequence of the basic assumption (14). 
Using (30), we can write diagram A as 

< e ( l ' l )  i t  ai)>A 1~1~, 

= dt2 dtl dt'2 dtl 

' V2 t x exp[tAo(t2-- tx) ] ~ < ai,b~> exp[i(eb~-ea,)(t2- tl)] 
bl 

- (Va,b;)  exp[ - - i (eb; -  eai)(t~-- tl)] (31) 
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which shows that the basic block of Eq. (25) makes its appearance again. 
We thus apply to each contraction the rules found above to write 

(32) 

Diagram B involves cross contractions, i.e., contractions that cross the 
dashed line. Using (30), one can see that the block (25) occurs again. This 
will be a common feature of all the remaining terms! Rules (a) and (b) 
above are valid for any contraction. The rule (c) is now the following: due 
to the f-functions of (24), t~ = t 1 and t~ = t2, so that we have two ordered 
times, tl and t2, to be integrated from 0 to t, giving 

( t2/2)[(A/(A + iAo) ) + (A/(A - iAo))] 2 

The result is thus 

(P~'L~(t,  a i ) ) B =  ~.2\A2+A2 j (33) 

Lime 

A 0 t~ t z  

time 

t'z t'~ o 

B , 1 I I 
0 t ~ L2 t t'z t'~ 0 

Fig. 2. 

I 
I 
I 
i 
I 

L t I I 

b t, t~ t t~ r, b 

The three diagrams arising from the (p = 1, q = 1) = (1, 1) term in the expansion of 
Eqs. (13) and (18). 
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This shows that the rule (c) assigns a factor (z//(A-iAo)) or 
(A/(A + iAo) ) for each non-cross-contraction, depending upon whether it 
contracts ti with ti+l or t'1 with t~+1, and a factor [(A/(A+iAo))+ 
(A / (A-  iA0))] for each cross-contraction. 

Diagram C involves the special feature of crossing lines, which, due to 
the basic assumption (14), kill one summation, in comparison with 
diagrams A and B; its contribution can be easily seen to be of order 
t/p(ea,)~ t/tp, relative to A or B, and hence negligible. The fact that 
contractions with crossing lines are negligible is a well-known rule. (7 9) 

4. The term (2, 0). This term gives rise to the three diagrams of 
Fig. 3. For diagram A we apply rules (a) and (b) above and then realize 
that we are left with two ordered times to be integrated from 0 to t, giving 
(t2/2!)(A/(A- iAo)) 2. The result is then 

r ~ l t ~  2 ] 2a-2! ~ (34) 

Diagram B does not contribute, because the time ordering, in addition 
to the 6-functions that occur, annihilates the integration domain. We thus 
find the rule that non-cross-contractions can only be contiguous. 

Finally, diagram C is negligible because it involves intersecting lines. 

ti me I I time 

I 
P 

A 0 t~ t2 t3 t4 t 0 

8 I i 
0 t 0 

I [--1 
t~ t2 t3 t4 

Fig. 3. 

, [ I 
0 t I t 2 t~ t 4 t 0 

The three diagrams arising from the (4, 0) term in the expansions (13) and (18). 
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5. The term (p,O). From the above considerations, the only 
diagram that contributes to the term (p, 0) contains p contiguous 
non-cross-contractions, or "bubbles," thus giving 

, ~1 , ,  a,)) = (  \ Z /  (35) 

6. The term (p = 2, q = 2). We consider the two diagrams of Fig. 4, 
taken from those that contribute to this term. 

Diagram A. From rules (a) and (b) above, we have the following 
contributions: (ro, 41 

4 contractions ~ \-~-/ 

The equivalent of rule (c) is now the following: due to the cross con- 
tractions we get 6-functions that can be used to eliminate t', and t;, setting 
them equal to t 3 and t4, respectively, and bringing them to the LHS of the 
diagram; we also have t; = t~, which can again be brought to the LHS of 
the diagram and integrated from t 4 to t .  We are left with four ordered times 
on the LHS, to be integrated from 0 to t, giving 

4 ~. A + i Ao F-A----S~o 

We finally have 

I 
L 

time I 

I 
1 

I h 
A 0 t~ t 2 t~  t ~  t 

~ 0  2 f 2A2 2 

t ime  

i 
t, t; t; t; o 

(36) 

B 

Fig. 4. 

I 
I 
I 
I 
I 

I i I 
0 t I t 2 t 3 t .  t t'4 [3 t'2 t'l 0 

Two of the diagrams arising from the (2, 2) term in the expansions (13) and (18). 
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Diagram B. We again use the 6-functions to bring all the times to the 
LHS. We have two times t~ = t2 and t; = t'l varying independently (i.e., they 
are not ordered) from 0 to t3, and then two ordered times t3 and 14, to be 
integrated from 0 to t. If t~ and t] were ordered, the whole time integral 
would give t~/4!; however, the two possibilities tl < t'~ and t~ > t'~ give the 
same contribution, so that we get 2t4/4!. The result is then 

fl~'ai\4 214 ~ 2 (  2A 2 ~2 
(37) 

3.2. The General Rules. 
Evaluation of the Survival Probability 

We now collect the rules that we have found from the above analysis. 
First, the qualitative rules: 

1. Only contractions with nonintersecting lines contribute. 

2. Non-cross-contractions can only be contiguous (bubbles). 

3. The number of cross contractions must be even. 

The structure of the general diagram is illustrated in Fig. 5. It has the 
following characteristics: 

(a) There are 2p times on the LHS and 2q on the RHS. 

(b) There are (2p + 2q)/2 = p + q contractions. Out of these, 2k are 
cross contractions; there are left (2p -2k) /2  = p - k  bubbles on 
the LHS and (2q -2k) /2  = q -  k on the RHS. 

(c) 

time 

We have the relations 
2 k +  1 

2 
i - 1  

2 k +  1 

2 
i ~ l  

- �9 " (-5 
2 n  t t imes  

nj b u b b l e s .  

n i + k = p  (38a) 

n;. + k = q  (38b) 

I 
J 

i 

t 

time 

Fig. 5. 

(->, .g-'~ (-'~ �9 r " U'~ 

2n I t imes 

n2w, ibubbfes . . .  n' z bubb les  n'~ bubbles 

The general diagram arising from the expansions (13) and (18). 
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We now have the following numerical contributions to the (p, q) term: 

1. A factor ( - ) P  +q. 

2. Each contraction gives a factor 

1 F~, 1 (ra,~ p+q 
2 2 2P+q\ 2 / 

3. Time integrations. Each bubble in the LHS gives a factor 
3 / ( 3 -  iAo), each bubble in the RHS gives a factor 3/(3 + i3o), 
and each cross contraction a factor 

_ i30/ \32 + 32J \ 3  + iAo] 

We bring all the times to the LHS. As a result, we have n l + n ]  
bubbles between 0 and the first cross contractions, n 2 --k n~ between the first 
and the second cross contractions, etc. The number of time variables to be 
integrated from 0 to t is thus 

(nl+n'l)+(nz+n'2)+ ... +(n2k+l+n'2k+l)+2k=p+ q (39) 

If these p + q time variables were all ordered, the final time integral 
from 0 to t would give tP+q/(p-+-q)!. This is not the case, though, because: 
the 2k times associated with the cross contractions are indeed ordered; 
between the ( i - 1 ) t h  and the ith cross contractions we have ni+n~ 
bubbles, of which ni are ordered aong themselves, n~ are also ordered 
among themselves, but the ni ones can be in any position relative to the n~ 
ones: the total number of possibilities for the ith interval is thus the 
number of permutations of ni + n~ objects, disregarding the permutations of 
n; and n~ objects separately; i.e., (ni+n~)!/ni! n~!. 

The final result of the time integrations is thus 

tp+q 2k+l~r (l/li~-n~( Zl ~ p-k 
(P+q)! ~*=3 k n, J \ A - i 3 o J  

A q - k (  232 2)2k 

• (77~iao) \~=+~o. 

Collecting the above results and summing over all allowed diagrams, 
we find the survival probability of Eq. (18), before averaging over initial 
states, as 
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<eali-~l(t)>= E (-)P+q ( J '  
p,q,k 2P+q(p + q )! \ A - iAo] 

• \775U 

--k 

~1 \(//i-~-//rll(//2AI-nr21'''(//2k+lqLntgk+l)//2 , ] \  //2 ~/ \ F/2k+ 1 ( 4 0 )  

{~i}{-;} 

The prime in the last summation indicates that the restrictions (38) 
have to be enforced. 

Using Eq. (19) of ref. 18, we can evaluate the last sum in Eq. (40), with 
the result 

2' ( p+q~(p+q-2k~  (41) 
{~,}{4=\ 2k ] \  p - k  J 

The remaining sums in (40) can also be performed, obtaining, for a 
fixed initial state, the following expression: 

(Pl%~(t)) = 1 +exp AZ+A ~ t (42) 

To obtain the final result, we have to average over the initial states as 
indicated in Eq. (18). In the limit of high density of levels, we finally have 

( P ~ ( t ) )  =~  [1 + (exp ( F ( g )  z/2 A2+A~t))~J (43) 

where ( . - . )~  indicates the thermal average 

( e x p ( F ( a )  A2 

exp A2+A2ot exp(-fle) p(~)& (44) 

Z being the bath partition function of Eq. (8). 
Equation (43) is our main result. A discussion of some of its properties 

is given in the next section. 

4. P R O P E R T I E S  OF THE S U R V I V A L  P R O B A B I L I T Y  

We first observe that, if we expand the exponential in (42), we get 
back the first-order result (28) provided by the golden rule. Although the 

822/65/3-4-24 
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precise final functional form of the survival probability is not yet known 
and will depend on the particular level density assumed for the thermal 
bath, the large-t limit can be easily calculated. If the level density p(e) is 
such that the product 

e x p (  A2+A 2F(~)A2t)exp(-fie)p(~) 

is a uniformly bounded function, for all values of t, the limit calculation 
and the averaging over initial states commute. For a level density p(e) 
belonging to this class of functions, we find that, as t ~ ~ ,  the survival 
probability tends to 1/2. This is a sensible result related to the limitation 
flAo ~ 1. It indicates that both states of the system, ~ = _+ 1, become equally 
populated. 

From (43) we can calculate the transition probability as 

We can also calculate the polarization n(t), defined as 

n(t) = ( az )  (46) 

where the bracket denotes a quantum mechanical plus an ensemble 
average. Writing a~ = I 1 ) ( I I - I - 1 ) ( - l I, we can express the polariza- 
tion as 

n ( t ) = ( P l ~ l ( t ) ) - ( P ~  x(t)) (47) 

Using (43) and (45), we then find 

n ( t ) - - @ x p ( - r ( e ) A 2  ' J) + t (48) 

We now center our discussion on this last quantity. 
It is clear from (42) that before averaging over initial states we get an 

exponential decay for the polarization, for any ai. However, if Fa, depends 
on e~ each initial state contributes with its own decay probability to the 
average (48) and the result is, in general, a nonexponential decay law. 

Therefore, if F(e) is a constant, independent of e, i.e., 

F(e) = F (49) 

the polarization (48) shows the exponential decay 

(--r- t) n(t)=exp-\A2 + A ~ (5o) 
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For a nonconstant F(e), even a slow energy dependence may be 
important in distorting the exponential (50), since F(e) occurs in the 
exponent in Eq. (48). More explicit results can be obtained with more 
specific forms for F(e) and p(e). 

5. S U M M A R Y  A N D  C O N C L U S I O N S  

We were able to extend the random-matrix model used in ref. 8 to the 
case where the total Hamiltonian contains a term which describes the 
two-level-system dynamics. As in ref. 8, we considered a "local GOE" for 
the system-bath interaction and calculated the ensemble average of the 
survival probability for times larger than the duration of a collision and 
smaller than the recurrence or Poincar6 time. It was also possible to sum 
the whole series into a compact functional form. The final result is 
expressed as an average over the initial states whose level density depends 
on the particular thermal bath of the problem. As we mentioned before, the 
survival probability depends both on the width of the weight factor that 
appears in the definition of the "local GOE" in Eq. (14) and on the 
parameter Ao related to the strength of the magnetic field around which the 
spin-l/2 particle is assumed to precess. At the end, the total effect of 
the additional term in the Hamiltonian is to multiply t by the factor 
A2/(A2+A~). In the particular case of F(~) constant, the survival proba- 
bility becomes a simple function [see Eq. (50)] and clearly the effect of the 
factor A2/(A2+ Aao) is to reduce, for a given time t, the probability of a 
spin-flip process. A number of applications of our result are under 
investigation. 
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